Inductive Inference for Large Scale Text Classification: Kernel Approaches and Techniques
نویسندگان
چکیده
In what case do you like reading so much? What about the type of the inductive inference for large scale text classification kernel approaches and techniques book? The needs to read? Well, everybody has their own reason why should read some books. Mostly, it will relate to their necessity to get knowledge from the book and want to read just to get entertainment. Novels, story book, and other entertaining books become so popular this day. Besides, the scientific books will also be the best reason to choose, especially for the students, teachers, doctors, businessman, and other professions who are fond of reading.
منابع مشابه
A Geometry Preserving Kernel over Riemannian Manifolds
Abstract- Kernel trick and projection to tangent spaces are two choices for linearizing the data points lying on Riemannian manifolds. These approaches are used to provide the prerequisites for applying standard machine learning methods on Riemannian manifolds. Classical kernels implicitly project data to high dimensional feature space without considering the intrinsic geometry of data points. ...
متن کاملخوشهبندی اسناد مبتنی بر آنتولوژی و رویکرد فازی
Data mining, also known as knowledge discovery in database, is the process to discover unknown knowledge from a large amount of data. Text mining is to apply data mining techniques to extract knowledge from unstructured text. Text clustering is one of important techniques of text mining, which is the unsupervised classification of similar documents into different groups. The most important step...
متن کاملIN-DEDUCTIVE and DAG-Tree Approaches for Large-Scale Extreme Multi-label Hierarchical Text Classification
This paper presents a large-scale extreme multilabel hierarchical text classification method that employs a large-scale hierarchical inductive learning and deductive classification (IN-DEDUCTIVE) approach using different efficient classifiers, and a DAG-Tree that refines the given hierarchy by eliminating nodes and edges to generate a new hierarchy. We evaluate our method on the standard hierar...
متن کاملMining the Semantic Web Statistical Learning for Next Generation Knowledge Bases
In the Semantic Web vision of the World Wide Web, content will not only be accessible to humans but will also be available in machine interpretable form as ontological knowledge bases. Ontological knowledge bases enable formal querying and reasoning and, consequently, a main research focus has been the investigation of how deductive reasoning can be utilized in ontological representations to en...
متن کاملLarge Scale Online Kernel Learning
In this paper, we present a new framework for large scale online kernel learning, making kernel methods efficient and scalable for large-scale online learning applications. Unlike the regular budget online kernel learning scheme that usually uses some budget maintenance strategies to bound the number of support vectors, our framework explores a completely different approach of kernel functional...
متن کامل